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Fig. 1. RMSE of cXt|t . Note: Each column represents a different value of ✓2 controlling for the variance ratio of Yt attributed to the linear term in the measurement equation.
Each row represents the different values of � the autoregressive parameter. The horizontal axis of each plot spans the values of ✓1 controlling for the variance ratio of Yt
attributed to the measurement noise in the measurement equation. RMSE are expressed in ratios of variance of Xt .

mean of the latent process for all periods. Consequently, if any
filter yields a normalized RMSE greater than 1, a better filtering
result would be obtained by setting dWt|t = E(Wt), for all t . Lastly,
we compare the filters’ capacities to discriminate between the
explanatory process and the measurement noise by computing
non-normalized RMSEs of impliedb⌘t . The results are respectively
presented in Figs. 1, 2 and 3.

Result 1. When the measurement equation is fully quadratic (✓2 =

0), the Qkf is the only considered filter capable of both:
(i) Filtering out a substantial part of the measurement noise,
(ii) Yielding accurate evaluations of X2

t|t .

We first analyze the case where the measurement equation is
only quadratic (✓2 = 0, left columnof all figures). Consistentlywith
the example of Table 4, all filters are ‘‘blind’’ on the evaluation of
cXt|t producing a flat cXt|t = 0, and normalized RMSEs are equal
to 1 whatever the values of � and ✓1 (see Fig. 1, left column).
However, looking at Fig. 2, we see that for any relative size
of the measurement errors and any persistence, the Qkf yields
more accurate evaluations of cX2

t|t than the other filters, showing
5%–60% smaller RMSEs depending on the case. Two patterns can
be observed here. First, the smaller the measurement errors, the
stronger the outperformance of the Qkf filter compared to the
others. Second, the outperformance of the Qkf increases with the
persistence of the latent process.22 This better performance is

22 We see this as a pleasant feature for term-structure modeling applications
where yields are typically highly persistent and measured with low errors.

confirmed by looking at the evaluation of the measurement noise,
where the Qkf also provides the smallest RMSEs for all values of
(�, ✓1) (see Fig. 3, first column). The reduction in themeasurement
noise RMSEs for the Qkf compared to the others can reach 70%.
This result emphasizes the substantial improvement of the fitting
properties of the Qkf compared to those of the other filters.

Result 2. Formeasurement equationswhere the linearity degree goes
from 25% to 50%, the Qkf beats the other filters, especially for the
evaluation of cX2

t|t . Eventually, for levels of about 75% of linearity in the
measurement equation, the RMSEs of all filters converge to the same
values.

We turn now to the cases where the measurement equation has
from 25% to 50% of linearity degree (✓2 = {0.25, 0.5}, second
and third columns of all figures). We first leave aside the Ekf 1

(see Result 3). For cXt|t , normalized RMSEs are more or less the
same for the Ekf 2 and the Ukf in all cases. In comparison, the
Qkf is either equivalent, either showing smaller RMSEs for highly-
persistent cases (� = 0.9 or � = 0.95, third and fourth rows of
Fig. 1). This better performance is confirmedwhen looking at Fig. 2.
In all cases, the Qkf possesses lowest RMSEs for cX2

t|t . For example,
for � = 0.9, ✓1 = 0.2 and ✓2 = 0.25, the Qkf shows RMSEs
slightly below 60% of X2

t standard deviationwhereas the others are
all above 70% (see Fig. 2, third row of panel (b)).

Unsurprisingly, this evidence places the Qkf ahead of its
competitors for the de-noising exercise: for panels (b) and (c) of
Fig. 3, RMSEs of b⌘t are always below the others for theQkf. Looking
at panel (d) where the measurement equation is 75% linear (fourth
column of all figures), we see that all RMSEs eventually converge


