
A. Monfort et al. / Journal of Econometrics 201 (2017) 348–366 351

Fig. 1. Simulation of an ARG0 process: a short-term rate with zero lower bound spells. Notes: This figure displays on the left panel the simulated path of a short-term rate
dynamics defined by the following conditional distribution: rt |rt�1 ⇠ �0(0.1 + 990rt�1, 0.001). The grey zones correspond to periods where the simulated short rate hits
zero. On the right panel we have the associated marginal cumulative distribution function.

2.2. Moments, stationarity and lift-off probabilities of ARG0 processes

The exponential-affine form of the Laplace transform given
in Eq. (4) allows for an easy derivation of the properties of
ARG0(↵, �, µ) processes. In this subsection, we show that ARG0
processes possess simple closed-form formulas for conditional and
unconditional moments, stationarity conditions, and especially for
calculating conditional probabilities of reaching zero, staying at
zero or leaving zero (lift-off).

First, note that the affine property of the ARG0 process implies
that all conditional cumulants are affine functions of the past value
of the process. Their derivation is made simple by the use of the
log-Laplace transform. Proposition 2.1 and associated corollaries
derive the first two conditional and unconditional moments of an
ARG0 process.

Proposition 2.1. Let (Xt ) be an ARG0(↵, �, µ) process. We use the

notation ⇢ := � µ. The conditional mean Et (Xt+1) and variance

Vt (Xt+1) of Xt+1 given its past are respectively given by:

Et (Xt+1) = ↵µ + ⇢Xt and

Vt (Xt+1) = 2µ2↵ + 2µ⇢Xt = 2µEt (Xt+1) . (6)

Corollary 2.1.1. (Xt ) has the following semi-strong AR(1) represen-
tation:

Xt+1 = ↵µ + ⇢Xt +
p
2µEt (Xt+1) "t+1 , (7)

where ("t ) is a martingale difference with unitary conditional vari-

ance.

Corollary 2.1.2. (Xt ) is stationary if and only if ⇢ < 1 and, in this

case, its unconditional mean and variance are respectively given by:

E(Xt ) = ↵µ

1 � ⇢
and V(Xt ) = 2↵µ2

(1 � ⇢)(1 � ⇢2)
. (8)

Proof. See Appendix A.1. ⌅

In particular, from the conditional moments given in Propo-
sition 2.1, we derive simple expressions for a semi-strong AR(1)
representation that helps calculating the unconditional first-two
moments of the process. Two key features of the ARG0 are worth
noticing. First, the time-varying conditional variance is propor-
tional to the conditional mean and, thus, it linearly shrinks with
the level of Xt . This implies that, in a low-level environment, the
ARG0 process shows low conditional volatility, a typical feature of
interest-rates during zero lower bound periods (see Filipovic et al.

(2017)). Note also that the conditional variance of the ARG0 process
is bounded from below by 2µ2↵ when Xt reaches zero. Second,
the closed-fromavailability of the first-two conditional and uncon-
ditional moments implies that simple estimation procedures can
be used such as the generalized method of moments, or pseudo-
maximum likelihood techniques.

We concentrate now on conditional probabilities of an ARG0
process to reach zero, to stay at zero for more than a certain
number of periods, or to lift-off in exactly h periods. To investigate
this sojourn in state zero and the associated lift-off probability, the
following lemma proves useful.

Lemma 2.1. Let X be a random variable valued inR+
and 'X (u) is its

Laplace transform. Then, we have:

PX {0} = lim
u!�1

'X (u) . (9)

Proof. See Appendix A.2. ⌅

This Lemma makes the computation of the conditional prob-
abilities of hitting zero very simple. The main formulas are pre-
sented in the following proposition.

Proposition 2.2. Let (Xt ) be an ARG0(↵, �, µ) process and let

us denote by 't,h(u1, . . . , uh) = Et [exp (u1Xt+1 + · · · + uhXt+h)]
its multi-horizon conditional Laplace transform. Then, the following

properties hold:

(i) P(Xt+h = 0 | Xt ) = lim
u!�1

't,h(0, . . . , 0, u)

= exp

(
�(1 � ⇢)

"
⇢h

µ(1 � ⇢h)
Xt + ↵

h�1X

k=0

⇢k

1 � ⇢k+1

#)
,

(ii) P
⇥
Xt+1 = 0, . . . , Xt+h = 0

�� Xt

⇤
= exp(�↵ h � � Xt ) ,

(iii) P
⇥
Xt+1 = 0, . . . , Xt+h = 0, Xt+h+1 > 0

�� Xt

⇤

= exp [�↵ h � � Xt ] [1 � exp(�↵)] .

Proof. See Appendix A.2. ⌅

Corollary 2.2.1. If Xt = 0, the probability to stay in state 0 for the

next (h � 1) periods only is (1 � p)ph�1
with p = exp(�↵), and the

average sojourn time in zero is given by:

(1 � p)
+1X

h=1

hp
h�1 = 1

1 � p
= [1 � exp(�↵)]�1.

When ↵ = 0, this average sojourn time is +1 and the zero lower

bound becomes an absorbing state.


