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Fig. 2. 1-year probability of default. The dashed line shows the time series of the observed spread over a one-year horizon; formally, for date t , it shows EQ (di,t+1 year =

1|di,t = 0, ⌦t ) =
Q

(d1, 1year)/
Q

(1, 1 year). Solid lines show implied physical probabilities of default.

Fig. 3. Heterogeneous pool: simulated paths of factors anddefault counts. FB,t is drawn fromaBernoulli distributionwith parameter ⌫ = 5%. Conditional on⌦⇤
t = (Ft+1, ⌦t ),

n1,t+1 ⇠ P (0.4 ⇥ FN,6,t + FB,t ) and, for i > 1, ni,t+1 ⇠ P (0.4 ⇥ FN,i�1,t ). In addition, FN,i,t = 0.8 ⇥ FN,i,t�1 + ni,t�1. A high value of factor FB may immediately generate
defaults in segment 1, and these defaults propagate to the other segments by contagion.

F2,t .17 From the implied factor path (F2,t), we can deduce the
implied physical PDs for both models. Model-implied physical
PDs are also displayed in Fig. 2; they are substantially lower
with model M1. Therefore, in that context, using a model that
does not price default-event surprises may tend to overestimate
physical probabilities of default at short horizons or, equivalently,
to underestimate the credit-risk premia.

5.2. Recursive contagion

This subsection provides an illustration of themodel for hetero-
geneous pools introduced in Section 4. For expository purpose, we
consider a simple setting, but the approach remains tractable with
larger systems and more complicated exposure setups.

Six homogeneous segments are involved, each of them being
constituted of 100 entities. The factor Ft is equal to [FB,t , F 0

N,t ]
0;

(FB,t) is a sequence of i.i.d. Bernoulli variables with parameter
⌫ = 0.05. The process (FN,t), of dimension 6, keepsmemory of past

17 In the present context, F1,t does not intervene in spreads. This stems from the
fact that (F1,t ) and (F2,t , nt ) are independent under both P and Q , which implies
that ⇧(N(u), h) is of the form exp(G1,hF1,t ) ⇥ exp(G2,h(u)F2,t ). Therefore, since
st,h = (1/I) (d⇧(N(u), h)/du)u=0 /⇧(N(0), h), factor F1,t does not appear in st,h .

default counts in the different segments. Specifically, we have:

FN,j,t = ⇢FN,j,t�1 + nj,t�1, j = 1, . . . , 6,

where the smoothing parameter ⇢ is chosen independent of the
segment. If ⇢ is equal to one and FN,t0 = 0, then FN,t gives the
cumulated number of defaults between t0 and t�1 in the different
segments. When 0 < ⇢ < 1, FN,t keeps track of the number of past
defaults, but underweights the oldest ones. We use ⇢ = 0.8 in the
numerical example presented below.

Conditional on⌦⇤
t = (Ft+1, ⌦t), the counts nj,t+1, j = 1, . . . , 6,

follow independent Poisson distributions:

n1,t+1 ⇠ P (0.4 ⇥ FN,6,t + FB,t) and

nj,t+1 ⇠ P (0.4 ⇥ FN,j�1,t) if j > 1. (5.2)

This structure defines a circular network of segments where the
probability of experiencing defaults in segment j depends on the
number of recent defaults in segment j � 1 (or in segment 6 for
j = 1).

Fig. 3 displays simulated trajectories of the processes (Ft) and
(nt). We initialize the simulation with FN,1 = 0. At date 5, we get
the high value of factor FB (FB,5 = 1) that generates two defaults in
segment 1. This implies an increase in factor FN,1,t , which induces
one default in segment 2 at date 6, and so on. Even in the absence
of new shock on FB,t , defaults occur again in segment 1 at date 17


